If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=6Y^2-900
We move all terms to the left:
-(6Y^2-900)=0
We get rid of parentheses
-6Y^2+900=0
a = -6; b = 0; c = +900;
Δ = b2-4ac
Δ = 02-4·(-6)·900
Δ = 21600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21600}=\sqrt{3600*6}=\sqrt{3600}*\sqrt{6}=60\sqrt{6}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{6}}{2*-6}=\frac{0-60\sqrt{6}}{-12} =-\frac{60\sqrt{6}}{-12} =-\frac{5\sqrt{6}}{-1} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{6}}{2*-6}=\frac{0+60\sqrt{6}}{-12} =\frac{60\sqrt{6}}{-12} =\frac{5\sqrt{6}}{-1} $
| 6((x+1)/8-(2x-3)/16)=3(3/4x-1/4)-3/8(3x | | x+9=3x+x | | 1/3k-(k+1/3)=1/9(k=3) | | -(8v-5)+(6-7v)-1=7-(v-1)+(4v+4) | | 6x-10=2(x-1)+4(x-2) | | x+2=4x+29 | | x+28=4+13 | | 3p+3=2p+4.4 | | x+10=-x-4 | | Y=1200-10x | | 4x-125=10x+37 | | 180=119-3x+143 | | 2x+12=-x-9 | | 14=-7z | | 4r-19=4+41 | | x((-7+x)(2+-3x))=0 | | 128=85+12x-5 | | −3x3+23x2−14x=0 | | Y=0.75y+8+10 | | 3s-5=s+7 | | (7y+6)+(4y)=116 | | 60/x+5.5x=10 | | 8(x+14)=78 | | 56=4x+112 | | 2x^2+15x-236=0 | | 56=4x112 | | 3w+8=×0 | | 5.2+x=10.85 | | x^2+236-15x=0 | | (18x+3)+(5x-3)=161 | | 20(2)-16=4(2)+x | | 90=7x+34 |